Inverse and saturation theorems for radial basis function interpolation
نویسندگان
چکیده
منابع مشابه
Inverse and saturation theorems for radial basis function interpolation
While direct theorems for interpolation with radial basis functions are intensively investigated, little is known about inverse theorems so far. This paper deals with both inverse and saturation theorems. For an inverse theorem we especially show that a function that can be approximated sufficiently fast must belong to the native space of the basis function in use. In case of thin plate spline ...
متن کاملArtist-Directed Inverse-Kinematics Using Radial Basis Function Interpolation
One of the most common tasks in computer animation is inverse-kinematics, or determining a joint configuration required to place a particular part of an articulated character at a particular location in global space. Inversekinematics is required at design-time to assist artists using commercial 3D animation packages, for motion capture analysis, and for run-time applications such as games. We ...
متن کاملA new stable basis for radial basis function interpolation
It is well-known that radial basis function interpolants suffer of bad conditioning if the basis of translates is used. In the recent work [12], the authors gave a quite general way to build stable and orthonormal bases for the native space NΦ(Ω) associated to a kernel Φ on a domain Ω ⊂ Rs. The method is simply based on the factorization of the corresponding kernel matrix. Starting from that se...
متن کاملGrade Interpolation Using Radial Basis Function Networks
This paper analyses the application of Radial Basis Function (RBF) networks in grade interpolation. These networks are a very unique member of the family of Artificial Neural Networks. RBF networks have such theoretical properties that establish them as a potential alternative to existing grade interpolation techniques. Their suitability to the problem of grade interpolation will be demonstrate...
متن کاملPolynomials and Potential Theory for Gaussian Radial Basis Function Interpolation
Abstract. We explore a connection between Gaussian radial basis functions and polynomials. Using standard tools of potential theory, we find that these radial functions are susceptible to the Runge phenomenon, not only in the limit of increasingly flat functions, but also in the finite shape parameter case. We show that there exist interpolation node distributions that prevent such phenomena an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2001
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-01-01383-7